Instituto de Nanociencia y Materiales de Aragón
  • EspañolEspañol
Intranet
  • THE INSTITUTE
    • General information
      • Welcome
      • History of the Institute
      • Organizational chart
      • Departments
        • Department 1: Functional organic materials
        • Department 2: Materials for energy and environment
        • Department 3: Physics of materials and nanosystems
        • Department 4: Bio-nano-medicine
        • Department 5: Multifunctional magnetic materials
      • Scientific Committee
      • Annual Reports
      • Welcome Handbook
      • Associations
    • Directory
    • Location and contact
  • RESEARCH
    • Research Areas
      • Area 1: Materials for energy
        and environment (MEM)
      • Area 2: Materials for biomedicine (BIO)
      • Area 3: Materials for information
        technology (MTI)
      • Area 4: New phenomena at the
        nanoscale (NFN)
      • Area 5: Synthesis, processing and scaling
        of advanced functional materials (SPE)
      • Area 6: Singular experimental
        technologies (TES)
    • Research Groups
    • Scientific publications
    • International projects
    • INMA scientific infrastructure
    • Microdevices Engineering Technical Unit (UTIM)
      • Structure UTIM
      • Catalog UTIM
      • Applications UTIM
    • INMA large scientific facilities
  • TRAINING
    • Master NANOMAT
    • Degree studies
    • Master studies
    • PhD studies
    • Internships
    • Scholarships and grants
    • Course of introduction to laboratory safety -SegurINMA
    • Research career path in Spain
  • JOB OFFERS
  • DISSEMINATION
    • Activities
      • General public
      • Schools and institutes
      • Special events
        • Researchers’ Night
        • Woman and science
        • Semana de la Ciencia
          Valle de Benasque
      • Cátedra SAMCA de Nanotecnología (EN)
      • LMA
    • Projects
    • Advising and training
    • Awards and distinctions
    • Multimedia
  • TRANSFER
    • Technological offer
      • Patents
      • Capabilities for industry
    • Transferred technology
    • Spin-offs
  • EQUALITY
    • Protocols and prevention against harassment
Instituto de Nanociencia y Materiales de Aragón
  • THE INSTITUTE
    • General information
      • Welcome
      • History of the Institute
      • Organizational chart
      • Departments
        • Department 1: Functional organic materials
        • Department 2: Materials for energy and environment
        • Department 3: Physics of materials and nanosystems
        • Department 4: Bio-nano-medicine
        • Department 5: Multifunctional magnetic materials
      • Scientific Committee
      • Annual Reports
      • Welcome Handbook
      • Associations
    • Directory
    • Location and contact
  • RESEARCH
    • Research Areas
      • Area 1: Materials for energy
        and environment (MEM)
      • Area 2: Materials for biomedicine (BIO)
      • Area 3: Materials for information
        technology (MTI)
      • Area 4: New phenomena at the
        nanoscale (NFN)
      • Area 5: Synthesis, processing and scaling
        of advanced functional materials (SPE)
      • Area 6: Singular experimental
        technologies (TES)
    • Research Groups
    • Scientific publications
    • International projects
    • INMA scientific infrastructure
    • Microdevices Engineering Technical Unit (UTIM)
      • Structure UTIM
      • Catalog UTIM
      • Applications UTIM
    • INMA large scientific facilities
  • TRAINING
    • Master NANOMAT
    • Degree studies
    • Master studies
    • PhD studies
    • Internships
    • Scholarships and grants
    • Course of introduction to laboratory safety -SegurINMA
    • Research career path in Spain
  • JOB OFFERS
  • DISSEMINATION
    • Activities
      • General public
      • Schools and institutes
      • Special events
        • Researchers’ Night
        • Woman and science
        • Semana de la Ciencia
          Valle de Benasque
      • Cátedra SAMCA de Nanotecnología (EN)
      • LMA
    • Projects
    • Advising and training
    • Awards and distinctions
    • Multimedia
  • TRANSFER
    • Technological offer
      • Patents
      • Capabilities for industry
    • Transferred technology
    • Spin-offs
  • EQUALITY
    • Protocols and prevention against harassment
Instituto de Nanociencia y Materiales de Aragón
No Result
View All Result

Home » Nano-scale molecular detective: New on-chip device uses exotic light rays in 2D material to detect molecules

Nano-scale molecular detective: New on-chip device uses exotic light rays in 2D material to detect molecules

by INMAweb
18/11/2024
in Featured
0
Nano-scale molecular detective: New on-chip device uses exotic light rays in 2D material to detect molecules

Nano-scale molecular detective: New on-chip device uses exotic light rays in 2D material to detect molecules

Researchers have developed a highly sensitive detector for identifying molecules via their infrared vibrational “fingerprint”. Published in Nature Communications, this innovative detector converts incident infrared light into ultra-confined “nanolight” in the form of phonon polaritons within the detector´s active area. This mechanism serves two crucial purposes: it boosts the overall detector´s sensitivity and enhances the vibrational fingerprint of nanometer-thin molecular layer placed on top of the detector, allowing this molecular fingerprint to be more easily detected and analyzed. The compact design and room-temperature operation of the device hold promise for developing ultra-compact platforms for molecular and gas sensing applications.

Molecules have some sort of fingerprints, unique features that can be used to differentiate them. Each type of molecule, when illuminated with the right light, vibrates at a characteristic frequency (its resonance frequency, which typically occurs at infrared frequencies) and strength. Similar to what can be done with human fingerprints, one can exploit this information to distinguish different types of molecules or gases from each other. That can also protect us from potential dangers, by identifying poisonous and dangerous substances or gases instead of criminals.

One conventional approach is infrared fingerprint spectroscopy, which uses infrared reflection or transmission spectra to identify different molecules. However, the small size of organic molecules compared to the infrared wavelength results in a weak scattering signal, making it challenging to detect small quantities of material. In recent years, this limitation has been addressed using Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy. SEIRA spectroscopy leverages infrared near-field enhancement provided by rough metal surfaces or metallic nanostructure to amplify the molecular vibrational signals. The main advantage of SEIRA spectroscopy is its ability to measure and study minute material quantities.

Recently, phonon polaritons—coupled excitations of electromagnetic waves with atomic lattice vibrations—particularly hyperbolic phonon polaritons in thin layers of hexagonal boron nitride (h-BN), have emerged as promising candidates for boosting the sensitivity of SEIRA spectroscopy. “Previously, we demonstrated that phonon polaritons can be applied for SEIRA spectroscopy of nanometer-thin molecular layers and gas sensing, thanks to their long lifetimes and ultra-high field confinement,” says Prof. Rainer Hillenbrand from Nanogune.

However, SEIRA spectroscopy remains a far-field technique that requires bulky equipment, such as light sources, SEIRA substrates, and typically nitrogen-cooled infrared detectors. This reliance on large instruments limits its potential for miniaturisation and on-chip applications. In parallel, “we have been investigating graphene-based infrared detectors that operate at room temperature, and we have shown that phonon polaritons can be electrically detected and can enhance detector sensitivity,” adds Prof. Frank Koppens from ICFO.

By combining these two progresses, a team of researchers has now successfully demonstrated the first on-chip phononic SEIRA detection of molecular vibrations. This result was made possible through the joint experimental efforts of Nanogune and ICFO researchers, along with theoretical support from the groups of Dr. Alexey Nikitin at the Donostia International Physics Center and Prof. Luis Martín-Moreno at the Instituto de Nanociencia y Materiales de Aragón (CSIC- Universidad de Zaragoza). The researchers employed ultra-confined HPhPs to detect molecular fingerprints in nanometer-thin molecular layers directly in the photocurrent of a graphene-based detector, eliminating the need for traditional bulky IR detectors.

“One of the most exciting aspects of this approach is that this graphene-based detector opens the way towards miniaturisation,” comments ICFO researcher Dr. Sebastián Castilla. He continues, “By integrating this detector with microfluidic channels, we could create a true ‘lab-on-a-chip’, capable of identifying specific molecules in small liquid samples—paving the way for medical diagnostics and environmental monitoring.”

In a longer-term picture, Nanogune researcher and first author of the study, Dr. Andrei Bylinkin, believes that “on-chip infrared detectors operating at room temperature could enable rapid molecular identification, potentially integrated into smartphones or wearable electronics.” He further believes that “this would offer a platform for compact sensitive, room-temperature infrared spectroscopy.”

 

Illustration of an on-chip molecular vibration sensor based on a graphene IR detector, where phonon polaritons (bright rays) enhance the molecular fingerprint signal encoded in the photocurrent. (Credit: Dr. David Alcaraz, ICFO)

 

Reference:

Bylinkin, A., Castilla, S., Slipchenko, T.M. et al. On-chip phonon-enhanced IR near-field detection of molecular vibrations. Nat Commun 15, 8907 (2024). Featured in the journal’s Editors’ Highlights

https://doi.org/10.1038/s41467-024-53182-9

 

18 nov. 2024

Previous Post

CSIC researchers develop a water-soluble skin adhesive with healthcare applications

Next Post

The NFP group, from the INMA, receives the Innovation Award at the 3rd Energy Night

Next Post
El grupo NFP, del INMA, recibe el Premio Innovación en la III Noche de la Energía

The NFP group, from the INMA, receives the Innovation Award at the 3rd Energy Night

Últimas noticias destacadas

  • Two young scientists INMA achieve prestigious postdoctoral fellowships from the La Caixa Foundation for STEM disciplines
  • INMA researchers develop a revolutionary 4D printing technology using liquid crystal emulsions
  • Nano-scale molecular detective: New on-chip device uses exotic light rays in 2D material to detect molecules

Últimas publicaciones científicas destacadas

  • Room-temperature barocaloric effect in [Fe(pap5NO 2 ) 2 ] spin-crossover material
  • Study for CO2 separation with poly(ethylene oxide terephthalate)-poly(butylene terephthalate) multiblock copolymer membranes: Approaching a greener solvent preparation
  • Förster Resonance Energy Transfer (FRET) demonstrates in vitro chitosan-coated nanocapsules suitability for intranasal brain delivery

Últimas novedades

  • The INMA researcher Sara Bescós Ramo, selected as a finalist in the contest ‘My three-minute PhD thesis’, organized by the European consortium UNITA
  • This year, the  Cátedra SAMCA de Nanotecnología is launching the INMAGINA Award extended to the Iberus Campus (disruptive ideas in nanotechnology by young researchers at Campus Iberus)
  • Conrado Rillo Millán, INMA researcher, joins the Royal Academy of Exact, Physical, Chemical and Natural Sciences of Zaragoza.

Últimas noticias de divulgación

  • FenanoMENOS celebrates its tenth anniversary awakening scientific vocations in schoolchildren all over Spain
  • Exhibition ‘NanoAsalto Evolution’, on the occasion of the celebration of the Day of Women and Girls in Science
  • The Aragon Nanoscience and Materials Institute celebrates in 2025 the tenth edition of the educational project ‘FEnanoMENOS’

Bienvenida

  • Dr Cristina Momblona
  • Dr. Thomas S. van Zanten
  • Dr Cristina Bran

    Campus San Francisco, Facultad de Ciencias
    C/ Pedro Cerbuna, 12 – 50009 Zaragoza (España)

    Tel.:(+34) 876 55 33 22
    webmasterinma@unizar.es

    INSTITUTO DE NANOCIENCIA Y MATERIALES DE ARAGÓN, Copyright © 2022 INMA, CSIC-UZ | Aviso Legal | Política de cookies  | webmasterinma@unizar.es

    No Result
    View All Result
    • THE INSTITUTE
      • General information
        • Welcome
        • History of the Institute
        • Organizational chart
        • Departments
        • Scientific Committee
        • Annual Reports
        • Welcome Handbook
        • Associations
      • Directory
      • Location and contact
    • RESEARCH
      • Research Areas
        • Area 1: Materials for energy
          and environment (MEM)
        • Area 2: Materials for biomedicine (BIO)
        • Area 3: Materials for information
          technology (MTI)
        • Area 4: New phenomena at the
          nanoscale (NFN)
        • Area 5: Synthesis, processing and scaling
          of advanced functional materials (SPE)
        • Area 6: Singular experimental
          technologies (TES)
      • Research Groups
      • Scientific publications
      • International projects
      • INMA scientific infrastructure
      • Microdevices Engineering Technical Unit (UTIM)
        • Structure UTIM
        • Catalog UTIM
        • Applications UTIM
      • INMA large scientific facilities
    • TRAINING
      • Master NANOMAT
      • Degree studies
      • Master studies
      • PhD studies
      • Internships
      • Scholarships and grants
      • Course of introduction to laboratory safety -SegurINMA
      • Research career path in Spain
    • JOB OFFERS
    • DISSEMINATION
      • Activities
        • General public
        • Schools and institutes
        • Special events
        • Cátedra SAMCA de Nanotecnología (EN)
        • LMA
      • Projects
      • Advising and training
      • Awards and distinctions
      • Multimedia
    • TRANSFER
      • Technological offer
        • Patents
        • Capabilities for industry
      • Transferred technology
      • Spin-offs
    • EQUALITY
      • Protocols and prevention against harassment

    © 2025 JNews - Premium WordPress news & magazine theme by Jegtheme.

    Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies

    ACEPTAR
    Aviso de cookies