Instituto de Nanociencia y Materiales de Aragón
  • EspañolEspañol
Intranet
  • THE INSTITUTE
    • General information
      • Welcome
      • History of the Institute
      • Organizational chart
      • Departments
        • Department 1: Functional organic materials
        • Department 2: Materials for energy and environment
        • Department 3: Physics of materials and nanosystems
        • Department 4: Bio-nano-medicine
        • Department 5: Multifunctional magnetic materials
      • Scientific Committee
      • Annual Reports
      • Welcome Handbook
      • Associations
    • Directory
    • Location and contact
  • RESEARCH
    • Research Areas
      • Area 1: Materials for energy
        and environment (MEM)
      • Area 2: Materials for biomedicine (BIO)
      • Area 3: Materials for information
        technology (MTI)
      • Area 4: New phenomena at the
        nanoscale (NFN)
      • Area 5: Synthesis, processing and scaling
        of advanced functional materials (SPE)
      • Area 6: Singular experimental
        technologies (TES)
    • Research Groups
    • Scientific publications
    • International projects
    • INMA scientific infrastructure
    • Microdevices Engineering Technical Unit (UTIM)
      • Structure UTIM
      • Catalog UTIM
      • Applications UTIM
    • INMA large scientific facilities
  • TRAINING
    • Master NANOMAT
    • Degree studies
    • Master studies
    • PhD studies
    • Internships
    • Scholarships and grants
    • Course of introduction to laboratory safety -SegurINMA
    • Research career path in Spain
  • JOB OFFERS
  • DISSEMINATION
    • Activities
      • General public
      • Schools and institutes
      • Special events
        • Researchers’ Night
        • Woman and science
        • Semana de la Ciencia
          Valle de Benasque
      • Cátedra SAMCA de Nanotecnología (EN)
      • LMA
    • Projects
    • Advising and training
    • Awards and distinctions
    • Multimedia
  • TRANSFER
    • Technological offer
      • Patents
      • Capabilities for industry
    • Transferred technology
    • Spin-offs
  • EQUALITY
    • Protocols and prevention against harassment
Instituto de Nanociencia y Materiales de Aragón
  • THE INSTITUTE
    • General information
      • Welcome
      • History of the Institute
      • Organizational chart
      • Departments
        • Department 1: Functional organic materials
        • Department 2: Materials for energy and environment
        • Department 3: Physics of materials and nanosystems
        • Department 4: Bio-nano-medicine
        • Department 5: Multifunctional magnetic materials
      • Scientific Committee
      • Annual Reports
      • Welcome Handbook
      • Associations
    • Directory
    • Location and contact
  • RESEARCH
    • Research Areas
      • Area 1: Materials for energy
        and environment (MEM)
      • Area 2: Materials for biomedicine (BIO)
      • Area 3: Materials for information
        technology (MTI)
      • Area 4: New phenomena at the
        nanoscale (NFN)
      • Area 5: Synthesis, processing and scaling
        of advanced functional materials (SPE)
      • Area 6: Singular experimental
        technologies (TES)
    • Research Groups
    • Scientific publications
    • International projects
    • INMA scientific infrastructure
    • Microdevices Engineering Technical Unit (UTIM)
      • Structure UTIM
      • Catalog UTIM
      • Applications UTIM
    • INMA large scientific facilities
  • TRAINING
    • Master NANOMAT
    • Degree studies
    • Master studies
    • PhD studies
    • Internships
    • Scholarships and grants
    • Course of introduction to laboratory safety -SegurINMA
    • Research career path in Spain
  • JOB OFFERS
  • DISSEMINATION
    • Activities
      • General public
      • Schools and institutes
      • Special events
        • Researchers’ Night
        • Woman and science
        • Semana de la Ciencia
          Valle de Benasque
      • Cátedra SAMCA de Nanotecnología (EN)
      • LMA
    • Projects
    • Advising and training
    • Awards and distinctions
    • Multimedia
  • TRANSFER
    • Technological offer
      • Patents
      • Capabilities for industry
    • Transferred technology
    • Spin-offs
  • EQUALITY
    • Protocols and prevention against harassment
Instituto de Nanociencia y Materiales de Aragón
No Result
View All Result

Home » Graphene is made magnetic by intelligent nanostructuring

Graphene is made magnetic by intelligent nanostructuring

by INMAweb
25/10/2023
in Featured
0
El grafeno se hace magnético mediante nanoestructuración inteligente

Graphene is made magnetic by intelligent nanostructuring

A team of scientists led by David Serrate, CSIC scientist at the Instituto de Nanociencia y Materiales de Aragón, INMA, a joint institute of the CSIC and the University of Zaragoza, and responsible for this research, has imaged for the first time the magnetic behaviour of a graphene nanostructure. The work has been published in the prestigious journal Nature Communications, in which the authors have not only revealed the magnetic state of narrow graphene ribbons (~2 nm), but have also shown the method they have developed to magnetically characterise any planar nanographene.

The team, composed by researchers of from INMA, DIPC (Donostia International Physics Center) CINN (Nanomaterials & Nanotechnology Research Center, CSIC University of Oviedo), CFM (Center for Materials Physics, CSIC-University of the Basque Country) and CIQUS (Centro Singular de investiguación en Química Biológica y Materiales Moleculares, University of Santiago de Compostela), performed the whole experimental work at the Laboratorio de Microscopías Avanzadas (LMA), in Zaragoza, a Singular Scientific-Technical Infrastructure (ICTS) of the University of Zaragoza linked to the Aragon Nanoscience and Materials Institute (INMA). Starting by a specifically designed organic precursor, they synthesized the ribbons directly onto a magnetic surface, obtaining atomically precise edges that consist in an alternating sequence of zig-zag graphene segments. This geometry strongly confines the graphene electron cloud around the edge, which causes the instability responsible for the intrinsic magnetism of the graphene nanostructure –a remarkable fact taking into account that the ribbon is formed just by non-magnetic carbon and hydrogen atoms-. The detection method is the spin-polarized STM technique, a sort of microscopy which captures images of the current flowing between the sample and an atomically sharp needle able to count how many electrons travel with one or another magnetization. Graphene nanostructures are a promising platform for engineering electronic states with tailored magnetic and quantum properties. Bottom-up synthesis techniques have successfully produced atomically perfect structures with controlled size, shape and edge topology. Their versatility, low production cost, and natural length scale right within the quantum realm, makes them an excellent alternative to silicon based electronic devices. Future research in this line will tackle the challenge of preserving the quantum properties and enhancing the quantum coherence of this kind of ribbons. ‘In a few years from now we shall be able to provide the proof of concept of a self-assembled organic quantum bit… hopefully!’ says David Serrate, staff scientist of the Instituto de Nanociencia y Materiales de Aragón and responsible of the project.

 

Images:

Illustration: Left: Topographic image of one the graphene nanoribbons on the magnetic GdAu2 monolayer, superimposed with its molecular structure. Right: Zoom in in one of the ribbons with the simultaneous magnetization map showing the spatially resolved spin density of the edge.

David Serrate, Principal Investigator.

 

Reference:

Detecting the spin-polarization of edge states in graphene nanoribbons. Nature Communications 14, 6677 (2023). DOI: 10.1038/s41467-023-42436-7

 

25-10-2023

Previous Post

Second game Hi Score Science league – come and play

Next Post

A CSIC researcher leads ‘Nano4Zombie’, which aims to eliminate ‘old’ tumour cells using magnetic nanoparticles

Next Post
Una investigadora del CSIC lidera ‘Nano4zombie’, que busca eliminar células tumorales ‘viejas’ mediante nanopartículas magnéticas

A CSIC researcher leads 'Nano4Zombie', which aims to eliminate 'old' tumour cells using magnetic nanoparticles

Últimas noticias destacadas

  • 7 predoctoral contracts for doctoral training at INMA
  • Participation in ‘public hearing’ on the periodic evaluation of the INMA
  • The INMA researcher Rosa I. Merino has received the Épsilon de Oro award

Últimas publicaciones científicas destacadas

  • Aragonese researchers design nanoparticles that evolve in the tumour environment, generating two different therapies in succession
  • New step towards safer vaccines against bluetongue virus in sheep
  • Multifunctional polyoxomolybdate ionic liquid coatings for mitigating microbiologically influenced corrosion

Últimas novedades

  • Presentation of the Severo Ochoa and María de Maeztu scientific accreditations, organised at the Paraninfo of the University of Zaragoza
  • The INMA researcher Reyes Mallada receives the Award for Best Oral Communication at the XXXVIII National Conference on Chemical Engineering
  • GREENE Consortium advances sustainable magnet technology in Zaragoza

Últimas noticias de divulgación

  • FenanoMENOS celebrates its tenth anniversary awakening scientific vocations in schoolchildren all over Spain
  • Exhibition ‘NanoAsalto Evolution’, on the occasion of the celebration of the Day of Women and Girls in Science
  • The Aragon Nanoscience and Materials Institute celebrates in 2025 the tenth edition of the educational project ‘FEnanoMENOS’

Bienvenida

  • Dr Cristina Momblona
  • Dr. Thomas S. van Zanten
  • Dr Cristina Bran

    Campus San Francisco, Facultad de Ciencias
    C/ Pedro Cerbuna, 12 – 50009 Zaragoza (España)

    Tel.:(+34) 876 55 33 22
    webmasterinma@unizar.es

    INSTITUTO DE NANOCIENCIA Y MATERIALES DE ARAGÓN, Copyright © 2022 INMA, CSIC-UZ | Aviso Legal | Política de cookies  | webmasterinma@unizar.es

    No Result
    View All Result
    • THE INSTITUTE
      • General information
        • Welcome
        • History of the Institute
        • Organizational chart
        • Departments
        • Scientific Committee
        • Annual Reports
        • Welcome Handbook
        • Associations
      • Directory
      • Location and contact
    • RESEARCH
      • Research Areas
        • Area 1: Materials for energy
          and environment (MEM)
        • Area 2: Materials for biomedicine (BIO)
        • Area 3: Materials for information
          technology (MTI)
        • Area 4: New phenomena at the
          nanoscale (NFN)
        • Area 5: Synthesis, processing and scaling
          of advanced functional materials (SPE)
        • Area 6: Singular experimental
          technologies (TES)
      • Research Groups
      • Scientific publications
      • International projects
      • INMA scientific infrastructure
      • Microdevices Engineering Technical Unit (UTIM)
        • Structure UTIM
        • Catalog UTIM
        • Applications UTIM
      • INMA large scientific facilities
    • TRAINING
      • Master NANOMAT
      • Degree studies
      • Master studies
      • PhD studies
      • Internships
      • Scholarships and grants
      • Course of introduction to laboratory safety -SegurINMA
      • Research career path in Spain
    • JOB OFFERS
    • DISSEMINATION
      • Activities
        • General public
        • Schools and institutes
        • Special events
        • Cátedra SAMCA de Nanotecnología (EN)
        • LMA
      • Projects
      • Advising and training
      • Awards and distinctions
      • Multimedia
    • TRANSFER
      • Technological offer
        • Patents
        • Capabilities for industry
      • Transferred technology
      • Spin-offs
    • EQUALITY
      • Protocols and prevention against harassment

    © 2025 JNews - Premium WordPress news & magazine theme by Jegtheme.

    Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies

    ACEPTAR
    Aviso de cookies