Instituto de Nanociencia y Materiales de Aragón
  • EspañolEspañol
Intranet
  • THE INSTITUTE
    • General information
      • Welcome
      • History of the Institute
      • Organizational chart
      • Departments
        • Department 1: Functional organic materials
        • Department 2: Materials for energy and environment
        • Department 3: Physics of materials and nanosystems
        • Department 4: Bio-nano-medicine
        • Department 5: Multifunctional magnetic materials
      • Scientific Committee
      • Annual Reports
      • Welcome Handbook
      • Associations
    • Directory
    • Location and contact
  • RESEARCH
    • Research Areas
      • Area 1: Materials for energy
        and environment (MEM)
      • Area 2: Materials for biomedicine (BIO)
      • Area 3: Materials for information
        technology (MTI)
      • Area 4: New phenomena at the
        nanoscale (NFN)
      • Area 5: Synthesis, processing and scaling
        of advanced functional materials (SPE)
      • Area 6: Singular experimental
        technologies (TES)
    • Research Groups
    • Scientific publications
    • International projects
    • INMA scientific infrastructure
    • Microdevices Engineering Technical Unit (UTIM)
      • Structure UTIM
      • Catalog UTIM
      • Applications UTIM
    • INMA large scientific facilities
  • TRAINING
    • Master NANOMAT
    • Degree studies
    • Master studies
    • PhD studies
    • Internships
    • Scholarships and grants
    • Course of introduction to laboratory safety -SegurINMA
    • Research career path in Spain
  • JOB OFFERS
  • DISSEMINATION
    • Activities
      • General public
      • Schools and institutes
      • Special events
        • Researchers’ Night
        • Woman and science
        • Semana de la Ciencia
          Valle de Benasque
      • Cátedra SAMCA de Nanotecnología (EN)
      • LMA
    • Projects
    • Advising and training
    • Awards and distinctions
    • Multimedia
  • TRANSFER
    • Technological offer
      • Patents
      • Capabilities for industry
    • Transferred technology
    • Spin-offs
  • EQUALITY
    • Protocols and prevention against harassment
Instituto de Nanociencia y Materiales de Aragón
  • THE INSTITUTE
    • General information
      • Welcome
      • History of the Institute
      • Organizational chart
      • Departments
        • Department 1: Functional organic materials
        • Department 2: Materials for energy and environment
        • Department 3: Physics of materials and nanosystems
        • Department 4: Bio-nano-medicine
        • Department 5: Multifunctional magnetic materials
      • Scientific Committee
      • Annual Reports
      • Welcome Handbook
      • Associations
    • Directory
    • Location and contact
  • RESEARCH
    • Research Areas
      • Area 1: Materials for energy
        and environment (MEM)
      • Area 2: Materials for biomedicine (BIO)
      • Area 3: Materials for information
        technology (MTI)
      • Area 4: New phenomena at the
        nanoscale (NFN)
      • Area 5: Synthesis, processing and scaling
        of advanced functional materials (SPE)
      • Area 6: Singular experimental
        technologies (TES)
    • Research Groups
    • Scientific publications
    • International projects
    • INMA scientific infrastructure
    • Microdevices Engineering Technical Unit (UTIM)
      • Structure UTIM
      • Catalog UTIM
      • Applications UTIM
    • INMA large scientific facilities
  • TRAINING
    • Master NANOMAT
    • Degree studies
    • Master studies
    • PhD studies
    • Internships
    • Scholarships and grants
    • Course of introduction to laboratory safety -SegurINMA
    • Research career path in Spain
  • JOB OFFERS
  • DISSEMINATION
    • Activities
      • General public
      • Schools and institutes
      • Special events
        • Researchers’ Night
        • Woman and science
        • Semana de la Ciencia
          Valle de Benasque
      • Cátedra SAMCA de Nanotecnología (EN)
      • LMA
    • Projects
    • Advising and training
    • Awards and distinctions
    • Multimedia
  • TRANSFER
    • Technological offer
      • Patents
      • Capabilities for industry
    • Transferred technology
    • Spin-offs
  • EQUALITY
    • Protocols and prevention against harassment
Instituto de Nanociencia y Materiales de Aragón
No Result
View All Result

Home » Drug delivery applications of hydrophobic deep eutectic solvent-in-water nanoemulsions: A comparative analysis of ultrasound emulsification and membrane-assisted nanoemulsification

Drug delivery applications of hydrophobic deep eutectic solvent-in-water nanoemulsions: A comparative analysis of ultrasound emulsification and membrane-assisted nanoemulsification

by INMAweb
16/01/2025
in Highlight
0
Drug delivery applications of hydrophobic deep eutectic solvent-in-water nanoemulsions: A comparative analysis of ultrasound emulsification and membrane-assisted nanoemulsification

Drug delivery applications of hydrophobic deep eutectic solvent-in-water nanoemulsions: A comparative analysis of ultrasound emulsification and membrane-assisted nanoemulsification

Usman T. Syed, Javier Calzada, Gracia Mendoza, Manuel Arruebo, Emma Piacentini, Lidietta Giorno, João G. Crespo, Carla Brazinha, Víctor Sebastián

DOI: 10.1021/acsami.4c13163

ACS Appl. Mater. Interfaces 2025, 17, 4075−4086, 31 Dec. 2024

Abstract: The emergence of green chemistry and engineering principles to enforce sustainability aspects has ensured the prevalence of green solvents and green processes. Our study addresses this quest by exploring drug delivery applications of hydrophobic deep eutectic solvents (DESs) which are alternative green solvents. Initially, this work showcases the hydrophobic drug solubilization capabilities of a natural hydrophobic DES, menthol, and decanoic acid. To consider biomedical applications wherein polar media are encountered, this work further demonstrates the potential drug delivery application of these systems by encapsulating the anti-inflammatory local anesthetic lidocaine in hydrophobic DES-in-water nanoemulsions. NMR studies confirm the high solubility of the hydrophobic drug in hydrophobic DES comprising menthol and decanoic acid (1:2 molar ratio). Ultrasound emulsification and energy-efficient membrane emulsification techniques were employed to disperse 4% (v/v) DES into a 2% (w/w) Tween 20 surfactant aqueous solution. An isoporous microengineered membrane (nominal pore size ∼ 9 μm) was used to produce lidocaine-loaded DES-based nanoemulsions. Such membrane-assisted nanoemulsification was possible because the hydrophobic DES exhibits relatively low interfacial tension with the continuous phase and acts as a cosurfactant. Moreover, increased concentrations of lidocaine within the DES resulted in a further decrease in the interfacial tension and a lower melting point. Among the kinetic models analyzed to evaluate the release of lidocaine encapsulated in hydrophobic DES-in-water nanoemulsions, the Korsmeyer–Peppas kinetic model provided the best fit. The release constant “n” of <0.5 indicates that the drug release mechanism is predominantly governed by diffusion. Additionally, cytotoxicity against various human cell lines demonstrated the nanoemulsion’s potential for anti-inflammatory drug delivery applications. Consequently, the nanoemulsion of DES presents a promising solution for the effective loading and delivery of poorly soluble drugs. This innovative approach enhances drug solubility and bioavailability, providing a versatile platform for controlled drug release. By leveraging the advantages of nanoemulsion technology, our study underscores the potential of DES-based formulations to promote drug delivery systems across a variety of therapeutic applications.

Cover (explanation): The cover showcases custom laser-engineered membranes used for generating lidocaine-loaded nanocapsules via membrane emulsification. These nanoemulsions, based on hydrophobic deep eutectic solvents (DES), enhance drug solubility and bioavailability. The study demonstrates controlled drug release through diffusion and highlights the potential of DES-based nanoemulsions in biomedical drug delivery applications.

Cover (download)

Previous Post

The Aragon Nanoscience and Materials Institute celebrates in 2025 the tenth edition of the educational project ‘FEnanoMENOS’

Next Post

Innovation Award for the BONIFACE project for its impact on transforming both the ceramics industry and the sustainable construction sector

Next Post
Premio a la Innovación para el proyecto BONIFACE por su impacto para transformar tanto la industria cerámica como el sector de la construcción sostenible

Innovation Award for the BONIFACE project for its impact on transforming both the ceramics industry and the sustainable construction sector

Últimas noticias destacadas

  • 7 predoctoral contracts for doctoral training at INMA
  • Participation in ‘public hearing’ on the periodic evaluation of the INMA
  • The INMA researcher Rosa I. Merino has received the Épsilon de Oro award

Últimas publicaciones científicas destacadas

  • Aragonese researchers design nanoparticles that evolve in the tumour environment, generating two different therapies in succession
  • New step towards safer vaccines against bluetongue virus in sheep
  • Multifunctional polyoxomolybdate ionic liquid coatings for mitigating microbiologically influenced corrosion

Últimas novedades

  • Presentation of the Severo Ochoa and María de Maeztu scientific accreditations, organised at the Paraninfo of the University of Zaragoza
  • The INMA researcher Reyes Mallada receives the Award for Best Oral Communication at the XXXVIII National Conference on Chemical Engineering
  • GREENE Consortium advances sustainable magnet technology in Zaragoza

Últimas noticias de divulgación

  • FenanoMENOS celebrates its tenth anniversary awakening scientific vocations in schoolchildren all over Spain
  • Exhibition ‘NanoAsalto Evolution’, on the occasion of the celebration of the Day of Women and Girls in Science
  • The Aragon Nanoscience and Materials Institute celebrates in 2025 the tenth edition of the educational project ‘FEnanoMENOS’

Bienvenida

  • Dr Cristina Momblona
  • Dr. Thomas S. van Zanten
  • Dr Cristina Bran

    Campus San Francisco, Facultad de Ciencias
    C/ Pedro Cerbuna, 12 – 50009 Zaragoza (España)

    Tel.:(+34) 876 55 33 22
    webmasterinma@unizar.es

    INSTITUTO DE NANOCIENCIA Y MATERIALES DE ARAGÓN, Copyright © 2022 INMA, CSIC-UZ | Aviso Legal | Política de cookies  | webmasterinma@unizar.es

    No Result
    View All Result
    • THE INSTITUTE
      • General information
        • Welcome
        • History of the Institute
        • Organizational chart
        • Departments
        • Scientific Committee
        • Annual Reports
        • Welcome Handbook
        • Associations
      • Directory
      • Location and contact
    • RESEARCH
      • Research Areas
        • Area 1: Materials for energy
          and environment (MEM)
        • Area 2: Materials for biomedicine (BIO)
        • Area 3: Materials for information
          technology (MTI)
        • Area 4: New phenomena at the
          nanoscale (NFN)
        • Area 5: Synthesis, processing and scaling
          of advanced functional materials (SPE)
        • Area 6: Singular experimental
          technologies (TES)
      • Research Groups
      • Scientific publications
      • International projects
      • INMA scientific infrastructure
      • Microdevices Engineering Technical Unit (UTIM)
        • Structure UTIM
        • Catalog UTIM
        • Applications UTIM
      • INMA large scientific facilities
    • TRAINING
      • Master NANOMAT
      • Degree studies
      • Master studies
      • PhD studies
      • Internships
      • Scholarships and grants
      • Course of introduction to laboratory safety -SegurINMA
      • Research career path in Spain
    • JOB OFFERS
    • DISSEMINATION
      • Activities
        • General public
        • Schools and institutes
        • Special events
        • Cátedra SAMCA de Nanotecnología (EN)
        • LMA
      • Projects
      • Advising and training
      • Awards and distinctions
      • Multimedia
    • TRANSFER
      • Technological offer
        • Patents
        • Capabilities for industry
      • Transferred technology
      • Spin-offs
    • EQUALITY
      • Protocols and prevention against harassment

    © 2025 JNews - Premium WordPress news & magazine theme by Jegtheme.

    Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies

    ACEPTAR
    Aviso de cookies